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Abstract. We analyze a pion form factor formulation which fulfills the Analyticity requirement within the
Hidden Local Symmetry (HLS) Model. This implies an s–dependent dressing of the ρ − γ VMD coupling
and an account of several coupled channels. The corresponding function Fπ(s) provides nice fits of the pion
form factor data from s = −0.25 to s = 1 GeV2. It is shown that the coupling to KK has little effect, while
ωπ0 improves significantly the fit probability below the φ mass. No need for additional states like ρ(1450)
shows up in this invariant–mass range. All parameters, except for the subtraction polynomial coefficients,
are fixed from the rest of the HLS phenomenology. The fits show consistency with the expected behaviour
of Fπ(s) at s = 0 up to O(s2) and with the phase shift data on δ1

1(s) from threshold to somewhat above
the φ mass. The ω sector is also examined in relation with recent data from CMD–2.

1 Introduction

In the physics of exclusive processes, the pion form factor
Fπ(s) plays an important role. It is indeed a fundamental
tool in order to estimate precisely the hadronic contribu-
tion to the muon anomalous magnetic moment (for recent
works, see [1] and [2] where an exhaustive list of references
can be found). It is also an important information, as it
allows to test the predictions of Chiral Perturbation The-
ory (ChPT) which describes the behaviour of QCD at low
energies where non–perturbative effects dominate. Among
very recent works on this classical subject, let us quote [1,
3,4].

Several descriptions of the pion form factor are pro-
posed. For instance, [1] gives a parametrization of the
P−wave ππ phase shift δ1

1(s) derived from general ana-
lyticity principles supplemented with some properties re-
lated with the existence of the ρ0(770) meson. Watson
theorem relates Fπ(s) with the ππ phase shift by proving
that Arg[Fπ(s)] = δ1

1(s) up to the first inelastic threshold.
In principle, this is located at the four–pion threshold,
however experimental data [5], especially on P–wave in-
elasticity, show that δ1

1(s) can be considered elastic with
a nice precision up to the 0.95 GeV region. The free pa-
rameters of the function defined by [1] are fitted on Aleph
[6] and Opal [7] τ decay data on the two–pion final state.
The derived phase [1] is shown to predict impressively the
phase of [8]. In this approach, the role of the ρ(770) me-
son is obvious; what is less obvious is whether additional
states like the ρ(1450) play any role below

√
s = 1 GeV.

Actually, while focussing on estimating hadronic contri-
butions to the muon anomalous magnetic moment, it is
not a real concern.

In the same spirit, [3] starts from phase shift data [5]
measured up to

√
s � 2 GeV, assumes Watson theorem

and fit the Aleph [6] and CLEOII [9] relevant data sets
with:

Fπ(s) = exp

{
α1s +

1
2
α2s

2 +
s3

π

∫ Λ2

4m2
π

dz

z3

δ1
1(z)

z − s − iε

}

where Λ is some cut–off and α1 and α2 are free parameters.
The approach of [4] relies instead on the Resonance

Chiral Theory developed in [10], where vector mesons are
explicitly introduced in the Lagrangian. Here the param-
eters to be fitted are the masses and couplings associated
with the usual vector meson nonet (those containing the
ρ(770)) and the one associated with the ρ(1450) meson.
Focusing on the ρ(770) nonet, this mass is fit as MV1 � 840
MeV, which does not prevent the Breit–Wigner ρ(770) pa-
rameters derived from this fit [4] to be very close to ex-
pectations [11]. Here again, the phase predicted from fits
to |Fπ(s)|2 can be compared to data [5] and an effect at-
tributed to the ρ(1450) meson seems to affect somewhat
the phase shift around s = 1 GeV2.

Beside these approaches, the most usual framework
is VMD in which Fπ(s) is represented as a sum of vec-
tor meson contributions; traditionally, these are chosen as
Gounaris–Sakurai functions [12]. Focussing on e+e− anni-
hilations, this is illustrated by the reference fit in [13] to
the data collected by the OLYA,CMD and DM1 Collabo-
rations [13,14]. The data set recently collected by CMD–
2 [15] is also fitted in this way. In this last study, two
prominent conclusions show up: the ω → ππ branching
fraction is found smaller than previously measured [13]
(1.33 ± 0.25% instead of 2.21 ± 0.30%) and a contribution
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from the ρ(1450) meson is needed in order to reach a good
description of the data set (fully located below 1 GeV).

Recently, it has been remarked [16] that the Hidden
Local Symmetry (HLS) Model [17] provides another con-
sistent framework for data analysis and a new expression
for Fπ(s) at low energies. Indeed, besides the usual vector
meson exchanges, this model predicts that some departure
from standard VMD could show up as a residual direct
coupling γπ+π−. The form factor written1:

Fπ(s) = 1 − a

2
− fργgρππ

s − m2
ρ + imρΓρ(s)

− fωγeiφgωππ

s − m2
ω + imωΓω(s)

(1)

has been used to fit the data then available [13,14]. This
expression provided a nice fit [16] for the whole energy
range below s ≤ 1 GeV2 without introducing any addi-
tional vector state like the ρ(1450) meson. For the HLS
parameter a, the fit returned a = 2.36 ± 0.02 in contrast
with standard VMD where a = 2.

This HLS based model has been used, besides the usual
Gounaris–Sakurai formula, to fit the recent CMD–2 data
set and has been found to provide as good results [15]. In
this case, the fit returned a = 2.336±0.015stat ±0.007syst,
in obvious correspondence with the previous estimate de-
rived from fit [16] to the former e+e− data sets [13,14]. As
for the previous data sets, when using the HLS model as
expressed by (1), no effect below the φ mass was observed
which could be attributed to a ρ(1450) contribution in
contrast with the standard (VMD) fit [15].

The use of a varying width Breit–Wigner formula to
account for the ρ propagator, as done in (1), permits a con-
venient description of the pion form factor from threshold
to the φ(1020) mass. However, this approximation pre-
vents from drawing any conclusion on the pion form factor
behaviour below the 2–pion threshold, as this expression
for the pion form factor (which is not an analytic func-
tion) cannot be analytically continued in this region – and
then in the neighborhood of s = 0. However, the condi-
tion Fπ(0) = 1 can instead be propagated to the 2–pion
threshold using known information from ChPT; this pre-
dicts Fπ(4m2

π) = 1.17 ± 0.01 to be compared with the fit
result [16] Fπ(4m2

π) = 1.176 ± 0.001. Moreover, the phase
of Fπ(s) resulting from the fit performed with (1) is a pre-
diction for the δ1

1(s) ππ phase shift and also compares well

1 We use the so–called Orsay Phase formulation for the
isospin breaking term commented on below. It has been shown
in [18] that the ω term in (1) actually approximates an ana-
lytic function which vanishes at s = 0 and then does not affect
the condition Fπ(0) = 1. On the other hand, as will be re-
called in Sect. 2, the coupling constants and the ρ Higgs–Kibble
mass are such that fργgρππ/m2

ρ ≡ a/2. Therefore, Fπ(0) = 1
is certainly fulfilled by (1), up to (ρ) finite width effects. If in-
stead of Γρ(s) in (1) one introduces the finite width effects by
Θ(s−4m2

π)Γρ(s), where Θ(s−4m2
π) is the usual step function,

then Fπ(0) = 1 is always fulfilled; we show below that a consis-
tent treatment of loop effects is equivalent to introducing this
step function

[16] with the phase shift data of [19]. Even if this compar-
ison sounds successful, it is, however, desirable to avoid
such an indirect consistency check by using from start an
expression of the pion form factor in terms of analytic
functions and constrained in order to satisfy Fπ(0) = 1.

The aim of the present paper is to examine the pion
form factor in the context of the HLS Model by taking into
account both the non–anomalous [17] and anomalous [20]
sectors. This extends the previous study performed in [16]
by carefully considering the Analyticity requirement and
by examining in detail the effect of having several chan-
nels coupled to ππ within the HLS Model. This study will
be done by imposing the pion factor to fulfill the numer-
ical constraints derived from other sectors of low energy
phenomenology accessible to the HLS Model. Indeed, as
shown in our previous studies [21–23], anomalous decays
of the kind V → γP or P → γV and leptonic decays
(V → e+e−) fix with a valuable precision the basic pa-
rameters of the HLS Model (a, g) beside the breaking
parameters. Whether these constraints are well accepted
by the data on the pion form factor is indeed an important
issue for test.

Loop effects cannot be avoided in problems where the
ρ meson plays a crucial role. These will be considered in
the framework of the one–loop order treatment proposed
in [22]. Doing this way, one limits the possible couplings by
neglecting intermediate states with more than two parti-
cles which generate multiparticle loops; these are expected
to produce small effects [4]. This is supported by the ex-
perimental data of [5], which exhibit a ππ P–wave elastic-
ity consistent with 1 up to the φ mass and even slightly
above.

In Sect. 2, we derive the pion form factor Fπ(s) in ac-
cordance with Analyticity; we show how the ρ propagator
has to be dressed and that the γ − ρ coupling becomes
invariant–mass dependent at the same order. In Sect. 3,
we examine the loop corrections and show that choosing
the subtraction polynomial coefficients as fit parameters is
consistent. For clarity, we refer only to the non–anomalous
sector of the HLS Model in the body of the text; in order
to deal with the anomalous sector, more information is
given in the Appendices.

In Sect. 4, we recall the results obtained elsewhere con-
cerning the HLS phenomenology, which are imposed as
constraints when fitting the pion form factor. It should
be noted that our Fπ(s) has to be consistent with the ρ
mass derived from the HLS–KSFR relation (827 MeV). In
Sect. 5, we remind which kind of information can act as
(external) probes for our HLS Model: the ππ phase shift
δ1
1(s) and the (polynomial) behaviour of Fπ(s) near s = 0.

Our fit strategies and results on the pion form factor are
the purpose of Sect. 6, while the short Sect. 7 summarizes
our fit results concerning the ω contribution, especially
Br(ω → ππ). Finally, Sect. 8 is devoted to conclusions. In
three Appendices, we outline the Lagrangian content of
our model and the loop structure; we also give some infor-
mation about all coupling constants relevant for the pion
form factor within the HLS Model.
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2 The pion form factor in the hls model

The pion form factor is derived from the Lagrangian given
in Appendix A. This contains the traditional pieces [17]
of the HLS Lagrangian and includes the SU(3) symmetry
breaking procedure as defined in [24]. Nonet symmetry
breaking is also introduced in the way discussed in [23];
as will be seen below, this last breaking plays some role,
however minor if only the pion form factor is concerned.
It also contains an anomalous (V V P ) piece from the FK-
TUY Lagrangian [20] broken in the way described in [21,
22]; the ωρπ term of this Lagrangian (which is not af-
fected by symmetry breaking effects) plays an important
role in our formulation of the pion form factor; the role
played by the other anomalous couplings will be shown to
be marginal.

Actually, what comes out of the non–anomalous sector
of the HLS Model [17] at tree level is simply (1) without
the ρ width term and amputated from the ω contribution
which corresponds to some breaking of Isospin Symmetry.
Omitting these terms, (1) obviously meets the Analyticity
requirement (actually, it defines a meromorphic function)
but is of little use to describe real data from threshold
to the φ mass. Indeed, the ρ propagator which actually
occurs there is the bare propagator D0(s) = (s − m2

ρ)
−1

which exhibits a pole on the physical region s ≥ 4m2
π.

Introducing one–loop effects modifies the picture.
First, dressing of the ρ bare propagator moves the sin-
gularities outside the physical region. Second, loop effects
modify in a s–dependent way the transition amplitude
γ → ρ as was first shown in [25]. In the non–anomalous
HLS Lagrangian, this s–dependence is already generated
by the departure of the parameter a from its traditional
VMD value (a = 2); this can be seen directly from the
coupling expressions given in Appendix C. SU(3) Sym-
metry breaking and anomalous couplings both introduce
further s–dependent contributions. As global fits to ra-
diative and leptonic decay widths favors a � 2.5 [21,22],
this s–dependence of the γ → ρ transition amplitude has
certainly to be considered.

At one–loop order, the dressed propagator D(s) is
given by the Schwinger–Dyson Equation, which writes:

D−1(s) = D−1
0 (s) − Πρρ(s) (2)

where Πρρ is the ρ self–energy, the content of which be-
ing examined in some detail in Appendix B. Within the
non–anomalous HLS Model [17], contributions to the ρ
self–energy come only from pion and kaon loops; if one
considers also the anomalous sector of the HLS model, the
(FKTUY) Lagrangian of [20], additional V P loops have
to be introduced, especially ωπ0 which threshold is lower
in mass than KK. This is outlined in Appendix B.

It is expected that the correct expression for the isospin
1 part of the pion form factor is obtained by replacing the
denominator in (1) by the dressed propagator D(s) just
defined. This can be derived by resumming formally an
obvious infinite series of terms, each containing bare prop-
agators and loops (referred to in [4] as Dyson–Schwinger
Summation). The same final expression can also be ob-
tained more directly by adding an effective piece [22] to the

HLS Lagrangian of the form Πρρ(s)ρ2/2, which turns out
to modify the vector meson mass term by a s−dependent
piece. The (dressed) ρ propagator is then derived from this
effective Lagrangian at tree level. This method has been
discussed in [22].

When breaking Isospin Symmetry within the HLS
Model, charged and neutral kaons carry different masses
and this generates a ρ−ω mass–dependent transition term
[18]. It was shown in [18] that this gives rise to an ω contri-
bution to the pion form factor which approximates natu-
rally in the form shown in (1), precisely. It was also shown
[18] that the proposed way of breaking Isospin Symmetry
makes the ω contribution vanishing at s = 0 and thus does
not affect the Fπ(0) = 1 condition.

As stated above, considering one–loop corrections also
modifies the γ → ρ transition amplitude in a s–dependent
way. This can be derived directly using standard Feynman
rules and turns out to modify the original ργ coupling in
the following way [25]:

−e fργ ⇒ −e [fργ − Πργ(s)] (3)

We recall (see the Appendices) that the universal vec-
tor coupling g is related to gρππ by gρππ = ag/2 and that
an (extended) KSFR relation holds within the HLS model
m2

ρ = ag2f2
π . We also have fργ = m2

ρ/g. In order to write
(3), a factor of e has been extracted from Πργ(s) which is
thus of order g in couplings.

The content of Πρρ(s) and Πργ(s) is the purpose of
Sect. 3 and of Appendix B, where this is discussed in some
detail.

Therefore, taking into account one–loop corrections,
the isospin 1 part of the pion form factor is:

Fπ(s) = 1 − a

2
− [fργ − Πργ(s)] gρππ

s − m2
ρ − Πρρ(s)

. (4)

The non-anomalous sector of the HLS Model contri-
butes to Πργ(s) and Πρρ(s) through pion and kaon loops
weighted by the appropriate coupling constant combina-
tions. The anomalous (FKTUY) part of the Lagrangian
provides additional V P loops (see Appendix B). The prop-
erties of these loop corrections are discussed in detail in
the next section.

By using the expressions for gρππ, fργ and m2
ρ recalled

just above, one can check that Fπ(0) = 1 is fulfilled if and
only if:

Πρρ(0) + gΠργ(0) = 0. (5)

The node theorem [26] implies that Πρρ(0) = 0 and
therefore Πργ(0) = 0 should be satisfied. These two con-
ditions will be imposed to our model parameters.

The e+e− cross section contains an isospin breaking
term associated with the ω meson but also the correspond-
ing one associated with φ → ππ. However, the correspond-
ing published data [27] are not available in a usable way
for fit; fortunately, this effect is concentrated in a narrow
region around the φ mass, and is invisible in the data to
be considered. Nevetheless, one could note that the Orsay
phase of the φ meson as well as its branching ratio to ππ
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are well accounted for within the HLS Model broken in an
appropriate way [18].

Before closing this section, let us remark that the ω
contribution has practically no effect somewhat outside
the ω mass region. It is therefore sufficient to treat it as a
fixed width Breit–Wigner [16] with accepted values [11] for
the ω mass and width and with a constant phase factor
(see (1)). Additionally, we neglect the effects of ω − φ
mixing by setting fωγ = fργ/3 = m2

ρ/3g. Taking into
account the magnitude of this mixing angle [21,22] (�
3◦ from ideal mixing), this is certainly a safe assumption
when fitting the pion form factor.

Therefore, the pion form factor expression used in this
paper is (4), supplemented with the ω contribution as
given in (1) with the properties and constraints just de-
scribed.

3 Properties of the one–loop corrections

The loop content of the functions Πρρ(s) and Πργ(s) is
determined by the V PP , γPP , V V P and γV P couplings
occuring in the Lagrangian (A10); their expressions are
given in Appendix C. All basic PP and V P loops enter-
ing the functions Πρρ(s) and Πργ(s) are given by Disper-
sion Relations and have been computed in closed form in
[22]. Their detailed functional structure depends on the
usual HLS parameters g and a and, also, on symmetry
breaking parameters. These have been fitted several times
under various conditions [21–23,18], always providing re-
sults consistent with each other; these numerical values
will be assumed throughout this paper.

These loops should be subtracted minimally twice
(PP ) or three times (V P ) from requiring the correspond-
ing Dispersion integrals [22] to be convergent. Therefore,
in the full HLS Model (non–anomalous and anomalous sec-
tors), the subtraction polynomials must be at least second
degree in s and we can write:


Πργ(s) = Pγ(s) + Πργ(s)

Πρρ(s) = Pρ(s) + Πρρ(s)
(6)

where the Π(s) are sums of subtracted loop functions
given in [22], and the P (s) are polynomials with real coeffi-
cients. We choose to work with second degree polynomials,
and then the coefficients to be fitted (or fixed) are defined
by: 


Pγ(s) = d0 + d1s + d2s

2

Pρ(s) = e0 + e1s + e2s
2

(7)

It is suitable to redefine the (PP ) Π(s) functions given in
[22] in such a way that they behave like O(s3) near the
origin. As seen above, it is appropriate to impose Πργ(0) =
Πρρ(0) = 0 which turns out to fix2:

e0 = d0 = 0.

2 Assuming non–zero d0 and e0, would be practically equiv-
alent to releasing any constraint on mρ and fργ as clear from
(4)

It will be shown in the next section that the free pa-
rameters of our pion form factor model are only the re-
maining coefficients of the subtraction polynomials.

A relevant question is whether the polynomials P (s)
are really independent of each other or whether the inde-
pendent polynomials are those associated with the pion
and kaon loops contained in the P (s)’s. In this case, it is
appropriate to check that Pγ(s) and Pρ(s) are not propor-
tional.

Let us discuss here only the non–anomalous sector of
the HLS model [17]; information given in the Appendices
allows to examine the contributions of the anomalous (FK-
TUY) sector [20] with analogous conclusions. Using the
SU(3) breaking scheme proposed in [24], the piece rele-
vant for the pion form factor can be extracted from (A5)
in [24] and can be rewritten in terms of renormalized fields
(K ≡ Kren =

√
zKbare, π ≡ πren = πbare):

Lnew =

· · · +
iag

4z
ρ0

[
K− ↔

∂ K+ − K̄0 ↔
∂ K0 + 2z π− ↔

∂ π+
]

+ieA

[
(z − a/2 − a(�V − 1)/6)

z
K− ↔

∂ K+

−a(�V − 1)
6z

K̄0 ↔
∂ K0 + (1 − a/2)π− ↔

∂ π+
]

(8)

where z is the SU(3) breaking parameter 3 [28,24]. It
should be fixed to z = [fK/fπ]2 = 3/2 in order to re-
cover the correct value of the kaon form factor at s = 0.
Consistent fits to radiative decay widths of light mesons
confirm this value independently [21]. �V is another break-
ing parameter4 which has also been fitted [21] using ω/φ
leptonic decays as �V = 1.376 ± 0.031. Exact SU(3) sym-
metry corresponds to z = �V = 1.

Denoting �π(s) and �K(s) the pion and kaon loops am-
putated from their couplings to external legs (we neglect
the mass difference between K± and K0), we derive from
Lagrangian (8):


Πρρ(s)= g2
ρππ

[
�π(s) +

1
2z2 �K(s)

]

Πργ(s)=gρππ

[(
1 − a

2

)
�π(s) +

1
2z2

(
z − a

2

)
�K(s)

]
.

(9)

Let us denote Qπ(s) and QK(s), the subtraction poly-
nomials contained in �π(s) and �K(s). Then, these are re-
lated with Pρ(s) and Pγ(s) defined above by:


Pρ(s)= g2
ρππ

[
Qπ(s) +

1
2z2 QK(s)

]

Pγ(s)=gρππ

[(
1 − a

2

)
Qπ(s) +

1
2z2

(
z − a

2

)
QK(s)

]
.

(10)

It is obvious that the single case where Pρ(s) and Pγ(s)
are not independent of each other is if z = 1 (no breaking

3 z was also written 1 + cA in [24], referring to the original
naming of [28], or 	A in [21,22]

4 We have 	V = (1 + cV )2 in terms of the original breaking
parameter of the LV term of HLS Lagrangian [28,24]
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of SU(3) symmetry); then ei = gρππdi/(1 − a/2). There-
fore, it is quite legitimate to treat Pρ(s) and Pγ(s) as
independent when fitting experimental data.

Some additional remarks are of relevance before closing
this section. Within standard VMD (a = 2), the ρ prop-
agator is still dressed by loop effects as described above.
However, one could also expect that no one–loop dressing
connects the intermediate photon with the ρ meson and
therefore Πργ would disappear from the form factor (4).
The equations just above show that this statement is not
true, as:

lim
a→2

Πργ(s) =
g

2z2 (z − 1)�K(s) (11)

Therefore, an invariant–mass dependent dressing of
the ρ − γ coupling occurs as consequence of SU(3) sym-
metry breaking of the HLS model and this statement is
valid for all proposed breaking schemes [28,24,29] of the
HLS Model5. Additionally, it implies that, assuming VMD
(a = 2), the HLS model looses its direct γπ+π− coupling,
but SU(3) breaking generates direct γK+K− and γK0K

0

couplings.
A specific character of the HLS model is that it con-

tains a direct coupling of the photon to pseudoscalar pairs
and this generates a mass–dependent dressing of the γ −ρ
transition. However, this property is shared with another
identified class of models named VMD1 in [16] (for a re-
view, see [30]). A first such model which illustrates that
loop dressing of the γ − ρ transition can accomodate pion
form factor data is given in [31]; quite recently, the same
idea was developed up to a more refined comparison with
experimental data up to the φ mass [32]. We note that it
has been explicitly demonstrated that regular VMD and
VMD1 are equivalent [25], as one would expect from cor-
responding fit results [16].

4 External phenomenological constraints
on Fπ(s)

The HLS model [17] depends basically on only two pa-
rameters to be determined experimentally: the universal
vector coupling constant g and the parameter a which ex-
tends the model beyond the standard VMD assumption
(a = 2). This Lagrangian gives reliable predictions for all
hadronic two–body decays of light pseudoscalar provided a
suitable breaking scheme is implemented. Previous works
[21–23,18] illustrate that the breaking scheme outlined in
Appendix A allows to get a successfull account of all ex-
perimental data in the realm of the HLS model.

Only a few physics processes can be phenomenologi-
cally accounted for without significant symmetry break-
ing effects, noticeably the pion form factor. Simply using

5 It is interesting to note that the phase of Fπ(s) in (4) is
given by only the denominator, up to the first inelastic thresh-
old. In the non–anomalous HLS Model this is KK and then
an imaginary part is generated by a term identical to the one
written down in (11) above the φ mass. If one adds the anoma-
lous sector [20], things become somewhat different as the lowest
inelastic threshold becomes ωπ0

a varying width Breit–Wigner formula6 for the ρ prop-
agator, the HLS Model can achieve a quite satisfactory
description of Fπ(s) from threshold to the φ mass [16,15].
This description compares well with other approaches ac-
counting for the Analyticity requirement [1,3,4,31,12,32]
or not [16]. Actually, from a phenomenological point of
view, the Analyticity assumption for Fπ(s) gets its full im-
portance only when timelike region data and fits are used
to derive predictions outside this region: in the spacelike
region or near the chiral point. It was indeed shown in [16]
that the behaviour of Fπ(s) near s = 4m2

π predicted from
ChPT are well accounted for and that its phase describes
quite well the δ1

1(s) phase shift up to the φ mass.
Therefore, even if successfull with Fπ(s) in isolation,

establishing firmly the HLS Model as a consistent frame-
work for physics analysis leads to imposing to the pion
form factor to fulfill the parameter constraints of all the
rest of the HLS phenomenology [21–23]. As stated sev-
eral times above, this covers the whole set of radiative
and leptonic decays of light mesons. Additionally, it was
also shown in [23] that this HLS framework meets all ex-
pectations of Extended ChPT [33] concerning decay con-
stants and the mixing angle θ8. The value derived from
our fits for θ0 = −0.05◦ ± 0.99◦ did not match well with
the leading order ChPT estimate [33] θ0 � −4◦, how-
ever, a recent next–to–leading order calculation [34] (θ0 =
[−2.5◦, +0.5◦]) restores agreement with its phenomenolog-
ically extracted value. For thorough discussions on the
phenomenological results derived from the broken HLS
Model recalled in Appendix A, we refer the reader to [21–
23,18].

The parameter values derived from these fits to a very
large data set of partial widths are also given in Appendix
A and are imposed as numerical constraints to our pion
form factor fits. Here we focus on discussing the param-
eters entering explicitly (4) and the coupling constants
affecting the non–anomalous Lagrangian (8): a, g and z;
in the limit of unbroken Isospin Symmetry, the breaking
parameter �V drops out from the pion form factor expres-
sion.

Pion form factor fits [16,15] give two measurements
consistent with each other which can be averaged as a =
2.35 ± 0.01. From a global fit of all radiative and leptonic
decays of light meson [21], the best fit value is a = 2.51 ±
0.03. Variants of this model with a mass dependent ω −
φ mixing angle [22], or accounting for isospin breaking
effects [18] give values consistent with this one at never
more than 2 σ.

There is a significant departure between the value of
a derived from previous fits to the pion form factor and
the value coming from fits to radiative and leptonic de-
cays. As noted in [15], below s = 1 GeV2, it could be hard
to disentangle completely effects of departures from strict
VMD (a = 2) and effects of resonance tails (namely, the
ρ(1450)). The global fit to radiative and leptonic decays
can be considered as safer from this point of view and
then it looks well founded to prefer using a = 2.51 ± 0.03.
This turns out to attribute the difference with a = 2.35

6 This does not fulfill the requirement of Analyticity
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Table 1. Results on the behaviour of Fπ(s) near s = 0 from
different models, approaches and data sets. Parameters dis-
played are defined by (12). Entries containing the symbol −
are not fitted/given

λ1 λ2 λ3

GeV−2 GeV−4 GeV−6

ChPT [37] 1.88 ± 0.07 3.85 ± 0.60 3.0 ± 1.6
(without NA7) 1.88 ± 0.07 3.85 ± 0.60 4.1 ± 1.6

[39] 1.93 ± 0.06 3.90 ± 0.20 9.70 ± 0.70
[1] 1.86 ± 0.01 3.60 ± 0.03 −
[3] (τ) 1.83 ± 0.05 3.84 ± 0.03 −
[3] (e+e−) 1.92 ± 0.03 3.73 ± 0.02 −
[2] (τ) 1.89 ± 0.04 2.1 ± 1.7 15.2 ± 5.4
[2] (e+e−) 1.89 ± 0.04 6.8 ± 1.9 −0.7 ± 6.8

to higher resonance effects not accounted for in the HLS
fits in [16,15] and/or to another phenomenon (mass de-
pendent ρ − γ coupling).

All fits to the data considered [21–23,18] return g =
5.65 ± 0.02. Finally, fitting the SU(3) breaking parame-
ter z within this data set [21,18] always returned z =
[fK/fπ]2 = 3/2, as also expected from FK(0) = 1 [28,24].

If a consistent picture of the HLS phenomenology can
be achieved, it implies that these parameters can be fixed
at the values corresponding to the best fit in radiative and
leptonic decays (values recalled just above). In this case,
the only parameters relevant for the ρ meson which can be
allowed to vary are the (non–identically zero) coefficients
of the subtraction polynomials in (7). Indeed, the HLS
Model satisfies a modified KSFR relation which fixes the
ρ mass (m2

ρ = ag2f2
π) and fργ = m2

ρ/g in terms of only a
and g. As we have neglected the ω−φ mixing mechanism,
ω is approximated by its ideal component and then fωγ =
fργ/3 is also fixed.

Therefore, it is a kind of global fit to radiative and
leptonic meson decays and to the pion form factor to fit
Fπ(s) by fixing a, g and z. However, this means that the
ρ mass is fixed to mρ = 827 ± 4 MeV; using the relation
between gρππ and the width, the ρ width would correspond
to Γρ � 135 MeV.

Both values are clearly far from matching expectations
[11] and one may wonder how the pion form factor could
accomodate such ρ parameters. However, as noted in [22],
finite width effects (i.e, loop corrections) should restore
the consistency. One aim of the present paper is to check
and show that all consequences on ρ parameters of the
radiative and leptonic decays are indeed accomodated by
the pion form factor.

It is also important to point out a couple of subtleties.
The ρ mass, as defined by the real part of the propagator
Mρ, is highly model dependent [35]. The complex pole,
however, is a true invariant, as has been shown for several
models [25]. One should also note the difference between
Mρ and the “Higgs–Kibble” mass mHK (m2

ρ = m2
HK =

ag2f2
π) [25] resulting from spontaneous symmetry break-

ing.

5 Probes and data sets

Any fit performed with (4) actually returns an analytic
function with some uncertainty on the fit parameters.
These fits always optimize the description of data sensitive
to only |Fπ(s)|.

A first probe, as for other studies (see [1] for instance),
is to compare the phase predicted by Arg[Fπ(s)] with the
most reliable data on the δ1

1(s) phase shift [5,8] below√
s � 1 GeV.

A second probe is to compare numerically the be-
haviour of this fitted Fπ(s) near s = 0 to external sources.
These are mostly ChPT predictions [36,37] or approches
relying on the inverse amplitude methods [38,39,1,3].

Defining the low energy expansion of Fπ(s) by:

Fπ(s) = 1 + λ1s + λ2s
2 + λ3s

3 + · · · (12)

the works just quoted find parameter values as given in
Table 1; the results of [38] are very close to those displayed
and do not quote estimated errors. We also display the
results of polynomial fits [2] to timelike data (

√
s ≤ 0.6

GeV), fixing the charge radius (< r2
π >= 6λ1) to the value

found by the NA7 Collaboration [40].
It is clear from Table 1 that, whatever the method,

there is an overall consensus about the value of λ1. Even
if not as nice, the agreement for the value of λ2 looks quite
reasonable. The spread of central values for λ3 and their
accuracies should be however noted. It indicates, at least,
some model dependence. It should be noted that published
estimates for λ3 always go beyond ChPT predictions.

The data sets which basically enter our fits are the
former [13] and recent [15] data on e+e− → π+π− together
and separately. For convenience, the τ data [6,7,9] are not
considered in the present paper. Additionally, we limit our
fits to the region below s = 1 GeV2, for reasons to be
explained just below.

We also consider the spacelike form factor data of NA7
[40] and of the Fermilab experiment [41] after some check
of (fit) consistency with the timelike data. With these
data, our fit region extends from s � −0.25 to s � 1
GeV2.

Finally, we will compare the phase of Fπ(s) derived
from fitting |Fπ(s)| to the phase shift data of [5,8]. These
last data sets will be used as probes and not included in
the fitted data.

For the time being, we also do not attempt to extend
our fit (and/or the HLS Model) to higher s values (namely,
above the φ mass), where effects of ρ(1450) and ρ(1700)
have certainly to be accounted for. Extending the HLS
Model to such energies is an interesting issue, however, it
is not clear whether we would not be going beyond the
validity range of the HLS Model which is a low energy
model.

6 Fitting the pion form factor

In several preliminary studies, we tried examining the be-
haviour of our fit parameters to the former [13] and re-
cent [15] e+e− data. All fit parameters have been found
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Table 2. Fit results with the HLS Model. Coefficients of the expansion of Fπ(s) near
the origin; notations are those in (12). The first column indicates which are the coupled
channels considered in the Model function (4). The number of fitted data points is al-
ways 184, the number of free parameters is always 6, including 2 parameters for the ω
contribution. Errors given are derived from the full error matrix computed by minuit for
the fit parameters

λ1 λ2 λ3 χ2/dof

GeV−2 GeV−4 GeV−6 (Prob)

π+π− 1.899 ± 0.016 3.957 ± 0.017 10.768 ± 0.051 183.6/178 = 1.03
− − − 36%

π+π− + KK 1.899 ± 0.016 3.958 ± 0.017 10.772 ± 0.050 184/178 = 1.03
36%

π+π− + ωπ0 1.899 ± 0.016 3.847 ± 0.056 12.837 ± 0.124 173.3/178 = 0.97
59%

π+π− + ωπ0 1.896 ± 0.018 3.848 ± 0.059 12.841 ± 0.120 173.6/178 = 0.98
+ KK 58%

π+π− + ωπ0 1.895 ± 0.015 3.802 ± 0.026 15.427 ± 0.111 170.6/178 = 0.96
+ KK + K∗K 64%

π+π− + ωπ0 1.894 ± 0.015 3.786 ± 0.015 23.41 ± 0.094 169.8/178 = 0.95
+ KK + K∗K 66%
+ ρη

π+π− + ωπ0 1.894 ± 0.014 3.778 ± 0.012 34.118 ± 0.046 169.4/178 = 0.95
+ KK + K∗K 67%
+ ρη + ρη′

quite insensitive to any difference, except for the ω branch-
ing fraction to π+π− and the Orsay phase; this particular
point will be examined in Sect. 7. Therefore, in this whole
section, we consider together the data collected in [13] and
[15].

The effect of considering the timelike data [13,15] in
isolation and combined with spacelike data [40,41] is more
noticeable and amounts to about a 2σ deviation. Never-
theless, this effect is limited and these data sets contribute
to improving the behaviour of the pion form factor in the
spacelike region by avoiding to extrapolate without any
information. Therefore, for the work reported in this sec-
tion, we have prefered keeping them in the data set to fit,
reestimating the errors correspondingly.

6.1 Fit strategies and properties

We report in the following on various strategies used to
fit the pion form factor. These differ only by a progres-
sive account of all permitted coupled channels. We stress
once again that the number of fitted data points is al-
ways the same and that the number of free parameters
in the fit is not modified when accounting for more and
more coupled channels. We always have the 4 non–zero
subtraction parameters defined in (7) which account for
the ρ contribution and 2 more parameters to account for
the ω contribution (named φ and gωππ in (1)).

Qualitatively, all fits give always large correlation
(above the 95% level) coefficients (e1, e2) and (d1, d2).
However, the correlation coefficients between both sets is
always in the range of 10 to 40%. The parameters defined
in (12) are derived by expanding (4) near s = 0; when
computing errors on the λi, errors and correlations on fit-
ting parameters are taken into account.

On the other hand, the fit qualities associated with
subsets of possible coupled channels are displayed as last
data column in Table 2. They clearly show, that the fit
quality reached below the φ mass is always good. From ex-
amining the evolution of the minimum χ2, one should note
that adding KK gives no improvement or no degradation
in the model description. In contrast, one could remark
the jump in probability when adding the ωπ0 channel; in-
deed, it is a noticeable effect to reduce the minimum χ2

from � 184 to 174 without any additional freedom in the
model. This clearly comes from a better account of the
pion form factor between the ωπ0 threshold and the φ
mass where data are affected by small errors. Instead, the
KK channels can noticeably affect only a very few data
points; their very small effect might be due to the fact
that the corresponding loops are numerically negligible
when computed very close to threshold.

One could also note that adding the higher V P coupled
channels goes on slightly improving the fit quality below
the φ mass; as stressed above, this does not correspond
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Fig. 1. Spacelike data and fit. The data points are from [40]
and [41]. The fitting curve has been obtained by considering the
ππ, KK and ωπ0 channels. All channels subsets as defined in
the body of the text (including ππ alone) give representations
hard to distinguish from the one shown

to having more freedom in the model. In contrast with
the ωπ0 channel, effects of these higher threshold loops
are modest and can be neglected7. One might note, how-
ever, that these have more effects on data than the KK
channels, as clear from Table 2.

Finally, we have attempted fits by removing the func-
tion Πργ from (4), while keeping all parameters fixed by
HLS phenomenology at their values obtained from fit to
radiative and leptonic decays (a, g, . . . ). We never reached
a reasonable result. In order to remove this function one
clearly needs to release (at least a part of) these con-
straints in order to allow the fit to converge to a good
description of the data8. This was not attempted as our
aim was to examine the full consequences of having the
HLS Model and all known numerical constraints coming
from its phenomenology. We thus perform a kind of global
fit of all relevant decay modes and of the pion form factor
together. This exercise, however, tends to indicate that
the dressing of the ρ−γ transition amplitude is a relevant
concept and is requested by the consistency of the pion
form factor with the rest of the HLS phenomenology.

Along the same lines, we have attempted fits by fixing
the degree of the subtraction polynomials to 1, still fixing
the other parameter values (a, g, z). We also never reach a
reasonable description of the pion form factor data. There-

7 Whether adding K∗K channels and higher threshold chan-
nels is appropriate, while neglecting high mass meson contri-
butions or multiparticle loops, can certainly be questioned

8 The fit quality and results in [4,31,32] clearly proves this
statement

Fig. 2. Timelike data and fit. The data points are all subsets
from [13–15]. The fitting curve has been obtained by consid-
ering the ππ, KK and ωπ0 channels. All channels subsets as
defined in the body of the text (including ππ alone) give rep-
resentations visually identical to the one shown here

fore, the model structure looks consistent and motivates
the subtraction polynomial degree we choose.

6.2 The pion form factor in spacelike
and timelike regions

As stated above, whatever the subset of channels consid-
ered, the last data column in Table 2 shows that the fit
quality is optimum in both the spacelike and timelike s re-
gions considered. Accounting for the three coupled chan-
nels π+π−, ωπ0, KK (actually the neutral and charged
modes) seems the best motivated coupling scheme for the
invariant–mass region from threshold up to the φ mass.
We thus illustrate with this our fit results; visual differ-
ences with other channel subsets are tiny.

The fit functions discussed in all this subsection have
been obtained from a global fit to all existing timelike data
[13–15] and to the spacelike data of [40,41] simultaneously.

In Fig. 1, we display the fitted form factor in the space-
like region and, superimposed, are the data of [40,41]. As
expected, the description is quite reasonable.

In Fig. 2, we show the fit in the timelike region super-
imposed with all existing data [13–15]; in Fig. 3, we have
displayed the same fitting curve with only the new data
of [15]. Figure 2 shows that the whole energy range is well
described, including the region below 600 MeV (measured
by CMD). Figure 3 illustrates that the fitting curve de-
rived from fitting all timelike data altogether give also a
very good description of the recent CMD–2 data set [15]
alone in its full range. It should be noted that, in this
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Fig. 3. Timelike data and fit. The data points are only from
the recent data set collected by the CMD–2 Collaboration [15].
The fitting curve is the same as in Fig. 2 and its numerical
coefficients have been determined by a global fit to all available
timelike data and to the spacelike data of [40,41]

case, the fitting function corresponds to Br(ω → π+π−) =
2.12 ± 0.23%; we comment more on this point in Sect. 7.

It should also be remarked that the fitting function
being an analytic function of s, it is the same function
(given in (4) and supplemented with the last term from (1)
to account for the ω mass region) which fits the spacelike
and timelike s regions simultaneously.

The noticeable peculiarity of CMD–2 data with respect
to the previous data sets is that their systematic errors
are smaller than 1% [15]; from what is shown here, one
could conclude that the previous data sets, considered al-
together, behave globally with small effective systematics.
It could also be that the fitting function is analytically
enough constrained to be marginally sensitive to system-
atics.

From what was just discussed, we already know that
the data description following from our model is quite rea-
sonable. As clear from Figs. 2 and 3, no need for a ρ(1450)
contribution shows up below 1 GeV. This is also illus-
trated by the fit quality already reached in all cases (see
the last data column in Table 2).

As a final remark, one should note that the high value
for mρ = 827 MeV is not inconsistent with the data, pro-
vided the model pion form factor is suitably parametrized.
We noted already that this mass value derived from HLS
phenomenology [21] is very close to the estimate of the
vector nonet mass fitted in [4]. This proves, as noted in
[22], that it is the loop effects which are responsible for
pushing the peak location of the ρ meson (or its pole lo-
cation) to the customary value attributed to its mass [11].

Now, we focus on comparing refined consequences of
our model and fits with numerical predictions concerning
the behaviour of the pion form factor at threshold, and
the phase of our fitted Fπ(s).

6.3 Pion form factor behaviour at threshold

The results we got concerning the pion form factor be-
haviour at threshold are gathered in Table 2. They are
displayed using the notations of (12). Each line corre-
sponds to a case where a subset of the coupled channels
is considered and the size of the coupled channel subset is
increased. The second line breaks the obvious rule but is
given in order to show that coupling the KK has negli-
gible numerical effects on Fπ(s) and does not improve or
degrade the description obtained using only the ππ chan-
nel.

A first remark which can be drawn is that λ1 (hence,
the pion charge radius) is totally insensitive to whatever is
added to the ππ channel. For this parameter, our estimate:

λ1 = 1.896 ± [0.018]stat ± [0.003]syst. GeV−2 (13)

is in good agreement with all reported values: ChPT at
two–loops result [37], phase method result of [1], resonance
ChPT result [4], or the inverse amplitude result of [39] (see
Table 1). The systematic error is estimated by considering
the variation of the central value of λ1 as a function of the
subset of coupled channels.

The second coefficient λ2 varies only little as func-
tion of the number of open channels. However, there is
a clear systematic effect: its value decreases slowly when
new channels are opened (except for KK commented on
above). Interestingly, the values we get always match
nicely several entries in Table 1. This column in Table 2
leads us to conclude:

λ2 = 3.85 ± [0.06]stat. ± [0.10]syst. GeV−4 (14)

where the systematic error is estimated as for λ1. This
result matches well expectations from Table 1, especially
those derived from ChPT.

For the third coefficient λ3, the situation is much more
embarassing9. One should note that λ3 depends on the fit
parameters (ei and di), and also on the third order term
of the loops. This third order term is fixed and given by
the driving terms of all loops. The only way to change it
is to oversubtract the loops and introduce (free) e3s

3 and
d3s

3 terms in (7) to be fitted and/or fixed. However, the
fit quality already reached with fitting data below

√
s = 1

GeV cannot justify to simply increase the model freedom.
It thus seems that a reliable estimate of λ3 depends on a
reliable account of data somewhat above the φ mass and
on other sources of inelasticity generally neglected, like
multiparticle loops.

9 From Table 1 alone, the situation looks already confusing,
even by leaving aside the result of [2]. No ChPT estimate for
λ3 is currently available
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Fig. 4a–d. Comparison with the ππ phase shift data of [5] and
[8]. The curve plotted is Arg[Fπ(s)] with parameters fixed at
values corresponding to the best fit of |Fπ(s)| using all timelike
data [13–15] and the spacelike data from [40,41]. In a, only
the π+π− channel is considered; in b, the subset considered
is π+π−, ωπ0 and both KK channels. In c, the four K∗K
channels have been added to the previous channel subset; in
d, the previous subset is extended so as to include ρ0η and
ρ0η′. The agreement is perfect up to � 800 MeV and good up
to � 1.2 GeV always

Anyway, one should note first that the first two terms
of the chiral expansion of Fπ(s) are well defined and this is
not changed (or spoiled) by adding more and more coupled
channels. Secondly, one can assess that the data bounded
to

√
s ≤ 1 GeV alone look unable to permit a real mea-

surement of λ3, as its central value sharply depends on the
inelasticity accounted for in the region

√
s ≥ 1 GeV. This

inelasticity was here represented by high mass channels
coupling to the ρ(770) meson, however it could have been
anything else (like higher ρ meson contributions). Stated
otherwise, without a reasonably good knowledge of (gen-
erally neglected) inelasticity effects, the pion form factor
cannot provide a reliable estimate of λ3.

6.4 The phase of Fπ(s) and phase shift data

As stated above several times, all numerical parameters of
the analytic function Fπ(s) – actually, only its isospin 1
part is relevant here – are derived from fits to data sensi-
tive only to |Fπ(s)|. Therefore Arg[F I=1

π (s)] is a prediction
and can be compared with the most precise experimental
information on the phase shift δ1

1(s) [5,8].
In Fig. 4, we display this comparison using coupling

to only ππ (Fig. 4a), then coupling to both ππ and ωπ

(Fig. 4b); these do not differ from their partners with also
the KK channels opened. In Fig. 4c, the open channels are
all channels up to the 4 contributing K∗K final states;
finally, in Fig. 4 d, all possible channels of the full HLS
model are considered (the previous subset plus ρη and
ρη′).

In all cases, the insets show that the low energy region
is perfectly predicted up to mππ � 800 MeV, whatever
the subset of coupled channels considered.

Using coupling to only ππ (Fig. 4a), the agreement be-
tween our prediction and data is perfect up to about 800
MeV and remains very good up to

√
s � 1.3 GeV. Adding

KK does not modify sensitively this picture.
As soon as one opens the ωπ0 channel, the predicted

phase starts to diverge almost linearly from the exper-
imental data of [5] from about mππ � 1.2 GeV. Nev-
ertheless, the phase remains perfectly reproduced up to
mππ � 0.8 GeV. From about 900 MeV, the predicted
phase starts running 2 to 4 degrees above the data of [5];
this effect is systematic but consistent with the data. It
is worth remarking that the first inelastic coupled chan-
nel in the full HLS model is ωπ0 with threshold located
at 917 MeV. Therefore, from Watson theorem, one can
indeed expect that the phase predicted by the pion form
factor and the δ1

1(s) phase shift should start diverging10

at mππ = 917 MeV.
Keeping in mind the words of caution already stated

concerning the appropriateness of considering too high
threshold mass channels, it is nevertheless interesting to
remark a curious effect of the corresponding inelasticity:
the quasi–linear rise of the phase above 1.2 GeV which
follows from having introduced the coupling to ωπ0 is
softened more and more, when more (high mass) coupled
channels are considered.

We remarked already that our fits to annihilation data
below the φ mass do not exhibit any failure which could
be attributed to some neglected ρ(1450) contribution. On
the other hand, because we have no guide like the Wat-
son theorem, nothing clear can be stated by observing the
higher energy behaviour of the predicted phase when ac-
counting for V P loops. However, the continuation of the
annihilation cross section above the φ mass becomes too
large when V P loops are accounted for. Therefore, if fit-
ting some mass region above the φ meson, beside introduc-
ing the ρ(1450) and ρ(1700) mesons, one certainly needs to
modify the subtraction scheme by going to higher degree
subtraction polynomials. This issue will not be examined
any further here.

10 Actually, it is not that much the divergence between the
phase of Fπ(s) and the δ1

1(s) phase shift above 917 MeV which
looks appealing. It is rather the agreement between them up to
mππ � 1.3 GeV when limiting the subset of coupled channels to
ππ and KK which could look unphysical. However, examining
the elasticity of this wave [5] indicates that the (I = 1, l = 1)
ππ wave is still elastic at a � 95% level at this energy. There-
fore, nothing conclusive can be derived from this unexpected
agreement at relatively large invariant–mass
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7 The ω information from fits

We stated in the previous section that there was no notice-
able difference between the former annihilation data sets
considered together and the new data set, as far as the
isospin 1 part of the pion form factor is concerned. How-
ever, this does not extend to the ω parameters accessible
from the pion form factor in the timelike region.

We have performed several fits and we report on using
the set of all open channels. By closing the high energy
ones, one does not change the picture described now.

A fit to all former ππ timelike data [13,14] gives:

Br(ω → ππ) = 2.27 ± 0.35%, ϕ = 106.87◦ ± 7.16◦ (15)

with χ2/dof = 63.63/76 = 0.84 corresponding to a 84%
probability. It is close to the accepted value of 2.21±0.30%.
On the other hand, the same fit to the new data set of
CMD–2 [15] provides:

Br(ω → ππ) = 2.01 ± 0.29%, ϕ = 103.88◦ ± 2.91◦ (16)

with χ2/dof = 32.20/37 = 0.87 corresponding to a 69%
probability. This has to be compared with the branching
fraction recently published by CMD–2 Collaboration [15]
which yields 1.33 ± 0.25% from their fits. The central val-
ues of this result and ours are far apart (however, a 2σ
deviation only); this might also illustrate some model de-
pendence in extracting this information11. We have never-
theless checked our extracted values by considering several
subsets of open channels with never more than � 0.3 σ
fluctuations.

8 Conclusion

This study leads us to several conclusions. First, an ex-
pression for the pion form factor can be derived from the
HLS Model which fulfills all expected analyticity require-
ments. In this approach, the ρ − γ transition amplitude
becomes invariant–mass dependent and several two–body
channels couple to ππ; this arises as a natural feature of
the full HLS Lagrangian. Among these additional cou-
plings, the ωπ0 channel plays an interesting role as it is
lower in mass than the KK channels, more commonly ac-
counted for.

The derived description of timelike and spacelike ex-
perimental data is found consistent with all the rest of the
HLS phenomenology which was examined in detail else-
where. This includes also the HLS–KSFR relation which
defines a ρ mass of � 827 MeV perfectly accepted by the
pion form factor data. In the present modelling, the fit

11 It should be remarked that our fit of the data collected in
[13] gives a result close to the published fit of OLAY and CMD
data (namely 2.30 ± 0.5%). For this fit, [13] was taking into
account the coupling to ωπ0 channel in the way proposed by
[42]. Fitting the former data in [13] as done now with the new
data gives instead 2.00 ± 0.34% [15]

parameters are essentially subtraction constants (for the
ρ) and isospin symmetry violation parameters (for the ω).

Among the additional channels to be considered, a spe-
cial role is devoted to the ωπ0 channel which affects fit
qualities by a significant jump in probability. This reflects
a better account of the invariant–mass region from the
ωπ0 threshold to the φ mass. In contrast, the KK chan-
nels are found to provide no improvement and, even, no
change at all in fit qualities below the φ mass.

The model is fitted on data only sensitive to |Fπ(s)|.
The phase of Fπ(s) is thus a prediction which can be com-
pared with the data on the δ1

1(s) phase shift. It is found to
match perfectly these from threshold to about the ρ mass.
The agreement remains very good up to � 1 GeV and a
little above independently of the channel subset consid-
ered. All this matches well expectations from the Watson
theorem. We detect no difficulty which would lead to in-
clude a ρ(1450) contribution in order to improve the fit
quality below the φ mass.

The terms of order s and s2 of Fπ(s) at the chiral point
are found highly stable, with little or no sensitivity to the
inelasticity accounted for. They are found in fairly well
agreement with all known accepted values. The term of
order s3 is found instead to depend sharply on the inelas-
ticity accounted for; one may question the possibility to
extract this information reliably using only experimental
data below the φ mass.

The ω branching fraction to ππ is found smaller in the
data set recently collected by the CMD–2 Collaboration
than in the former data sets (2.01±0.29% instead of 2.27±
0.35%), however not as much as previously claimed (1.33±
0.25%).
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Appendix

A The lagrangian model

We outline in this Appendix the Lagrangian Model used in
order to derive the pion form factor. The construction of
the unbroken HLS Lagrangian can be found in [17] and,
specifically in [20] for its anomalous part. The breaking
scheme we use has been constructed in several steps start-
ing for the basic BKY mechanism as expressed in [43]. In
[24], we have first defined a way to break SU(3) flavor sym-
metry which preserves hermiticity of the non–anomalous
HLS Lagrangian. Breaking of nonet symmetry was first in-
troduced in [21] and examined in [23] in connection with
the Extended ChPT framework [33]. In [21,22] some fea-
tures especially related with the K∗ (anomalous) sector
were considered.
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The non–anomalous HLS Lagrangian can be written
[17]:

LNA = LA + aLV (A1)

where a is a parameter specific of the HLS Model; the tra-
ditional formulation of vector dominance corresponds to
setting a = 2. At lowest order, after gauging for both elec-
tromagnetism and the hidden local symmetry and after
breaking the SU(3) flavor symmetry, we have [24]:

LA = Tr[∂P XA∂P XA

+2ieA (P Q − Q P ) XA ∂P XA]
LV = Tr

[
f2

π [(gV − eAQ) XV ]2

+i(gV − eAQ) XV (∂P P − P ∂P ) XV ] . (A2)

In these expressions, A denotes the electromagnetic
field, V and P denote the matrices of resp. the vector and
pseudoscalar (bare) fields; we normalize these matrices as
defined in [24]. The quark charge matrix is e Q where
Q = Diag(2/3,−1/3,−1/3) and g is the universal vector
coupling [17].

XA and XV are symmetry breaking matrices originally
introduced in [43]:

XA = Diag(1, 1,
√

z)
XV = Diag(1, 1,

√
�V )

(A3)

where z = [fK/fπ]2 and �V is to be determined from data.
The expanded form of the Lagrangian LNA is given in
[24]. SU(3) Symmetry breaking breaks the canonical form
of this Lagrangian; the transformation which restores this
property is:

P ′ = XA P XA (A4)

which gives the renormalized field matrix P ′ in terms of
the bare one P . Nonet Symmetry breaking is introduced
by adding to the Lagrangian in (A1), a piece derived from
determinant terms of the field matrix [44]; this is given by
[23]:

LtH =
1
2
λ∂µη0∂

µη0 − 1
2
µ2

0η
2
0 (A5)

where η0 denotes the bare pseudoscalar singlet field. The
λ term of this Lagrangian piece also contributes to modi-
fying the kinetic energy term in a non–canonical way. The
full transformation which restores canonicity after break-
ing of both SU(3) and Nonet Symmetries is derived in [23].
It has been shown in this reference that the full canonical
tranformation can be simplified at leading order in break-
ing parameters z and λ. This turns out to use (A4) while
redefining the renormalized field matrix P ′:

P ′ = P ′
8 + xP ′

0 (A6)

where the subscripts 8 and 0 stand for, respectively, the
octet and singlet parts of the pseudoscalar field matrix.
x becomes the Nonet Symmetry breaking parameter(x �
1/

√
1 + λ) and has been fitted [21,23] from radiative de-

cays of light mesons to x � 0.90, indicating a 10% breaking
of Nonet Symmetry.

In our study of the pion form factor, we are interested
in accounting for the coupling of the ρ meson to vector
and pseudoscalar mesons. These coupling are anomalous
and are provided by the following piece of the (FKTUY)
Lagrangian [20]:

LFKTUY = CεµναβTr[∂µVν∂αVβP ] (A7)

in terms of the bare field matrices. This Lagrangian (re-
expressed in terms of renormalized fields using (A4) and
(A6)) allows for a good description of all modes except
those involving the charged K∗ [21,22]. In order to get a
successful description of all partial widths, the Lagrangian
in (A7) has to be broken. This can be achieved by combin-
ing the breaking (BGP) procedure defined in [29] together
with the replacement12 V → XT V XT . Then, the broken
anomalous piece above becomes [21,22]:

LFKTUY = CεµναβTr
[(

XT ∂µVνX−1
T

)
× (

X−1
T ∂αVβXT

)
P

]
(A8)

This Lagrangian has been examined in full detail in [21,
22] and its expanded form is given in [21]. All modes not
involving the K∗ mesons are strictly unaffected by this
breaking procedure, particularly the coupling (ρωπ). In-
stead modes involving the K∗ sector are affected. How-
ever, from a numerical point of view, couplings to neutral
K∗’s yield a negligible change while couplings to charged
K∗’s are deeply modified. It is interesting to note that
this procedure allows to recover the expression obtained
by Dillon and Morpurgo [45] for K∗ coupling constants
and coincide with the corresponding formulae derived in
the non–relativistic quark model (NRQM). The coefficient
in (A7) and (A8) is [20] C = −3g2/4π2fπ and the breaking
matrix writes [21,22]:

XT = Diag(1, 1,
√

�T ) (A9)

Concerning the pion form factor this breaking mechanism
plays a very minor role, as it does not affect the coupling
gρωπ and the ρK∗K couplings have little influence below
the φ mass.

Therefore the full HLS broken Lagrangian Model is:

LHLS = LNA + LtH + LFKTUY (A10)

and depends on a few parameters. Fits to radiative and
leptonic decays of light mesons [21–23] confirm the pre-
diction [43,24] for z (z = [fK/fπ]2 = 3/2 with a remark-
able precision). They also permit to fix the other break-
ing parameters: �V = 1.38 ± 0.03, �T = 1.19 ± 0.06 and
x = 0.90 ± 0.02. Additionally, these decays allow to de-
termine the fundamental parameters of the HLS model:
a = 2.51 ± 0.03 and g = 5.65 ± 0.02.

Stated otherwise, all physics parameters are fixed by
radiative and leptonic decays and not only the symmetry
breaking ones. Therefore, in order to impose the consis-
tency of the HLS Model and check its appropriateness to
12 This replacement resembles a renormalization of the vector
field matrix which is absent in the HLS model
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the whole low energy phenomenology, the freedom avail-
able when fitting the pion form factor is very small; this
only deals with the subtraction constants values and the
subset of open channels. All coupling constants relevant
for the pion form factor within the HLS model are listed
in Sect. C below.

B Structure of Πρρ(s) and Πργ(s)

The equation defining the pion form factor is given by
(4) with, in addition, an isospin violating term as given
in (1)– the ω contribution. Besides standard quantities, it
involves the γ → ρ transition amplitude Πργ(s) and the ρ
meson self–mass Πρρ(s).

Πργ(s) and Πρρ(s) are constructed from PP and V P
loops. All loops considered here should be understood am-
putated from their coupling constants to external (γ and
ρ) lines. As stated in the body of the text, multiparticle
loops (not present in the basic HLS Lagrangian) are not
considered.

Within the non–anomalous HLS Lagrangian, the pho-
ton and the ρ meson couple both to π+π−, K+K− and
K0K

0
; couplings to π+π−, K+K− exist as soon as a �= 2

and are modified by symmetry breaking effects. Instead
the coupling to K0K

0
is generated by SU(3) breaking of

the LV HLS Lagrangian [17,24]. Neglecting the kaon mass
splitting, this gives rise to two loop functions (pion and
kaon loops), given in closed form in [22] and named �π(s)
and �K(s) in the body of the text.

When taking into account the anomalous (FKTUY)
sector [20] of the HLS model, other intermediate states
have to be considered; first, we have ωπ0, ρ0η and ρ0η′,
neglecting the ωφ mixing. This gives rise to three addi-
tional V P loops, also given in closed form in [22]; they will
be denoted resp. �ω(s), �η(s) and �η′(s). The couplings to
K∗+K−, K∗−K+, K∗0K

0
, K

∗0
K0 give rise to the same

amputated loop denoted �K∗(s) if one neglects the mass
splitting generated by isospin breaking.

These basic loops come within Πρρ(s) multiplied each
by the square of their coupling constants to ρ, while in
Πργ(s), they are multiplied by the product of their cou-
pling constants to ρ and to the photon.

Whatever the (sub)set of loops effectively taken into
account, it should be stressed that this does not modify
the freedom of our model, as soon as one chooses to sub-
tract these functions three times; to a large extent, these
two information can be disconnected, as one can choose
externally the number of subtractions to be performed,
and there is no reason why the number of subtractions
should be minimal.

Actually, increasing the subset of coupled channels
turns out only to add definite functions with given cou-
plings determined numerically elsewhere by fits to radia-
tive and leptonic decays. These couplings will be listed
below.

Taking into account the effects of �η(s), �η′(s) and
�K∗(s) below the φ mass might be discussed, while ne-
glecting the tails of the ρ(1450) and ρ(1700) contribu-
tions or multiparticle loop effects. However, considering

besides the pion loop, the kaon loop with threshold at√
s � 1 GeV, while neglecting the ωπ0 with threshold at√
s = 0.917 GeV seems unjustified. Therefore, we can cau-

tiously consider that fit results with π+π−, KK and ωπ0

should be more relevant than their analogues with only
π+π− and KK.

C Coupling constants

From the Lagrangian piece written in (8), we can derive:


gρππ =
ag

2
, gγππ = (1 − a

2
)e

gρK+K− =
ag

4z
, gγK+K− = (z − a

2
− b)

e

z

g
ρK0K

0 = −ag

4z
, g

γK0K
0 = −be

z

(C1)

where b = a(�V − 1)/6. From our previous works [21–23],
the symmetry breaking parameters are all fixed as stated
just above.

From the anomalous Lagrangian pieces V V P and V Pγ
given in [21], setting:

Cω = − 3g2

8π2fπ
, Gω = − 3g

8π2fπ

(C2)

we get:


gρ0ωπ0 = Cω , gγωπ0 = Gω e

gρ0K∗±K∓ =

√
�T

z

Cω

2
,

gγK∗±K∓ =

√
�T

z

(
2 − 1

�T

)
Gω

3
e

gρ0K∗0K0 = −
√

�T

z

Cω

2
,

gγK∗0K0 = −
√

�T

z

(
1 +

1
�T

)
Gω

3
e

(C3)

with [21,22] �T = 1.19±0.06 being an additional breaking
parameter which has been introduced independently by
[45].

Defining the physical η/η′ fields in terms of singlet
and octet fields η0 and η8 has been shown [23] to meet
all requirements of Extended ChPT [33], including now
[34] the extracted value for θ0. One could also work in the
strange/non–strange field basis [46], but the correspon-
dence can be done [47] and lead to substantially the same
numerical results. Thus, defining the pseudoscalar mixing
angle by: 

 η

η′


 =


 cos θP − sin θP

sin θP cos θP





 η8

η0


 (C4)

and setting θP = θideal + δP , we have:
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gρ0ρ0η =
Cω

6

[√
2(1 − x) cos δP − (1 + 2x) sin δP

]

gρ0ρ0η′ =
Cω

6

[√
2(1 − x) sin δP + (1 + 2x) cos δP

]

gγρ0η =
e Gω

3

[√
2(1 − x) cos δP − (1 + 2x) sin δP

]

gγρ0η′ =
e Gω

3

[√
2(1 − x) sin δP + (1 + 2x) cos δP

]

(C5)

where [23] θP = −10.32◦ ± 0.20◦. x is a parameter ac-
counting for Nonet Symmetry breaking (no breaking cor-
responding to x = 1). It was fitted as independent pa-
rameter [21] to x = 0.917 ± 0.017 with a large correlation
coefficient [23] (θP , x). In [23], it was shown that the ob-
served quasi–vanishing of θ0 implies that

θP �
√

2
(1 − z)
2 + z

x. (C6)

This is numerically well fulfilled and leads to a fit qual-
ity identical to those obtained in [21] where this condi-
tion was not requested; this however lessens significantly
correlations among fit parameters. This corresponds to
x = 0.901 ± 0.018, which is the value choosen for the
present work.
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